DIVIDING FRACTIONS I

Name: \qquad Class: \qquad Due Date: \qquad
Family Member Signature: \qquad

Objective:

To practice dividing fractions using language and logic.

Necessary Information:

In class we have been completing a progression of division problems. In each question, we convert the mathematical statement to a language statement.

Eg. $80 \div 20$ We read this as "How many groups of 20 go into 80 ?"
Answer: 4
Students should be reading every math question using the language equivalent. We are also saying decimals properly using the place value system.

Practice Section:

1) $150 \div 3 \quad$ How many groups of \qquad in Answer: \qquad
2) $2400 \div 600$

How many groups of \qquad in \qquad ? Answer: \qquad
3) $1.6 \div 0.8$

How many groups of \qquad in

Answer: \qquad
4) $0.30 \div 0.05$

How many groups of \qquad in \qquad ? Answer: \qquad
5) $\frac{7}{10} \div 0.7$

How many groups of \qquad in \qquad ?

Answer: \qquad
6) $1 \frac{2}{10} \div \frac{1}{10} \quad$ How many groups of \qquad in \qquad ?

Answer: \qquad
7) $\frac{15}{10} \div \frac{1}{10} \quad$ How many groups of \qquad in \qquad ?

Answer: \qquad
8) $1 \div \frac{1}{10} \quad$ How many groups of \qquad in \qquad ?

Answer: \qquad 9) $\frac{9}{10} \div \frac{3}{10} \quad$ How many groups of \qquad in \qquad ? Answer: \qquad
10) $1 \frac{5}{10} \div \frac{1}{2} \quad$ How many groups of \qquad in \qquad ? Answer: \qquad
11) $4.2 \div \frac{6}{10} \quad$ How many groups of \qquad in \qquad ? Answer: \qquad
12) $\frac{25}{100} \div \frac{5}{100} \quad$ How many groups of \qquad in \qquad ? Answer: \qquad
13) $1.2 \div \frac{3}{100} \quad$ How many groups of \qquad in ? Answer: \qquad
14)

15)

16)

17)

0.1 mm

In Your Real World:

With a family member answer the following question.
The area of your rectangular garden is $36 \mathrm{ft}^{2}$. The length of one side is 4 ft .

What is the length of the other side?

What is the perimeter of the garden? \qquad

