VOLUME OF CYLINDERS

Name: \qquad Class: \qquad Due Date: \qquad
Family Member Signature: \qquad
Objective:
To determine the volume of cylinders using our knowledge of circles.
Necessary Information:
Calculators Allowed
Area of a circle $=\pi \times \mathrm{rxr} \quad \mathrm{V}_{\text {prism }}=\mathrm{A}_{\text {base }} \times \mathrm{h}_{\text {prism }}$
Practice Section:

1) Find the volume of each cylinder.

Cylinder	Abase	$\mathbf{h}_{\text {prism }}$	$\mathbf{V}_{\text {prism }}$
a)			
b)			
c)			

d)

e)

$\mathrm{A}_{\text {base }}=$ \qquad
$\mathrm{h}_{\text {prism }}=$ \qquad

$$
\mathrm{V}_{\text {prism }}=
$$

$A_{\text {base }}=$ \qquad

$$
\mathrm{h}_{\text {prism }}=
$$

\qquad
$\mathrm{V}_{\text {prism }}=$ \qquad
f) A cylinder measuring 10 feet tall that has a circle base with a radius of 6 feet.
g) A circle base with diameter of 1.2 km and a prism height of 5.5 km .

$$
\begin{aligned}
& A_{\text {base }}= \\
& \mathrm{h}_{\text {prism }}=
\end{aligned}
$$

$\mathrm{V}_{\text {prism }}=$ \qquad

In Your Real World:

With a family member, answer the following question.
Christian Marian Becheanu saved a toddler in 2013 by allowing himself to be lowered 50 feet down a well that measured 1.5 feet across.
a) Determine the volume of space Christian travelled through until he reached the toddler.

